3 years ago

Anomalous normal stress controlled by marginal stability in fiber networks.

Abhinav Sharma, Jingchen Feng, Jordan Shivers, Fred C. MacKintosh

As first identified by Poynting, typical elastic solids exhibit axial extension under torsion. Along with related normal stress effects such as rod climbing of non-Newtonian fluids, this depends on the first normal stress difference $N_1$, which is of fundamental importance for a variety of nonlinear deformation and flow phenomena, especially in soft matter. This stress difference is almost always positive for elastic solids and viscoelastic polymer materials. Recent work has shown that biopolymer networks can exhibit negative normal stress, but whether $N_1$ itself can be negative in these networks has remained an open question. We demonstrate that lattice-based 2D and 3D fiber network models, as well as off-lattice 2D networks, can indeed exhibit an anomalous negative $N_1$. We also show that this anomaly becomes most pronounced near a critical point of marginal stability, suggesting the importance of critical fluctuations in driving the change of sign in $N_1$. Finally, we present a phase diagram indicating regimes of anomalous normal stress as a function of strain, network connectivity, and disorder.

Publisher URL: http://arxiv.org/abs/1711.00522

DOI: arXiv:1711.00522v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.