3 years ago

Spin dependent inelastic collisions between metastable state two-electron atoms and ground state alkali-atoms.

Hideki Konishi, Adrien Bouscal, Florian Schäfer, Tomoya Yagami, Yoshiro Takahashi

Experimentally the spin dependence of inelastic collisions between ytterbium (Yb) in the metastable 3P0 state and lithium (Li) in the Li ground state manifold is investigated at low magnetic fields. Using selective excitation all magnetic sublevels mJ of 174Yb(3P0) are accessed and four of the six lowest lying magnetic sublevels of 6Li are prepared by optical pumping. On the one hand, mJ-independence of collisions involving Li(F=1/2) atoms is found. A systematic mJ-dependence in collisions with Li(F=3/2) atoms, in particular suppressed losses for stretched collisional states, is observed on the other hand. Further, mJ-changing processes are found to be of minor relevance. The span of observed inelastic collision rates is between 1*10^{-11} cm^3/s and 40*10^{-11} cm^3/s, and a possible origin of the observed behavior is discussed.

Publisher URL: http://arxiv.org/abs/1705.06841

DOI: arXiv:1705.06841v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.