3 years ago

Nonlinear quantum optics with an electrically tunable quantum dot in a nano-photonic waveguide.

D. L. Hurst, A. P. Foster, D. Hallett, I. E. Itskevich, M. S. Skolnick, A. M. Fox, L. R. Wilson, E. Clarke, P. Kok, B. Royall

The generation of indistinguishable single photons and control of photon-photon interactions are key requirements for photonic quantum networks. Nano-photonic waveguide-based architectures, in which few-level solid state systems provide both single photon generation and the nonlinearity through which two or more photons interact, offer a scalable route to such networks. However, it is a challenge to maintain the optical quality of the embedded photon sources whilst also providing fine-tuning of the emission frequency and optical nonlinearity in a waveguide geometry. We demonstrate a tunable solid-state platform for scalable photonic quantum networks which allows local electrical control of both single photon generation and optical nonlinearity at the single photon level. Electrical tuning and switching of coherent photon scattering from a quantum dot embedded in a nano-photonic waveguide is demonstrated, with a transmission extinction as large as 40$\pm$2% measured on resonance. Observation of a clear, voltage-controlled bunching signal in the photon statistics of the transmitted light demonstrates the single photon character of the nonlinearity. The deterministic nature of the nonlinearity is particularly attractive for the future realization of photonic gates for scalable nano-photonic waveguide-based quantum information processing.

Publisher URL: http://arxiv.org/abs/1711.00682

DOI: arXiv:1711.00682v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.