3 years ago

Anomalous connection between antiferromagnetic and superconducting phases in pressurized non-centrosymmetric heavy fermion compound CeRhGe3.

Jiahao Zhang, Honghong Wang, J. D. Thompson, Yazhou Zhou, Zhe Wang, Qi Wu, Shu Cai, Eric D. Bauer, Ke Yang, Yi-feng Yang, Hengcan Zhao, Vladimir A. Sidorov, Aiguo Li, Jing Guo, Tao Xiang, Peijie Sun, Liling Sun

Unconventional superconductivity frequently emerges as the transition temperature of a magnetic phase, typically antiferromagnetic, is suppressed continuously toward zero temperature. Here, we report contrary behavior in pressurized CeRhGe3, a non-centrosymmetric heavy fermion compound. We find that its pressure-tuned antiferromagnetic transition temperature (TN) appears to avoid a continuous decrease to zero temperature by terminating abruptly above a dome of pressure-induced superconductivity. Near 21.5 GPa, evidence for TN suddenly vanishes, the electrical resistance becomes linear in temperature and the superconducting transition reaches a maximum. In light of X-ray absorption spectroscopy measurements, these characteristics appear to be related to a pressured-induced Ce valence instability, which reveals as a sharp increase in the rate of change of Ce valence with applied pressure.

Publisher URL: http://arxiv.org/abs/1711.00688

DOI: arXiv:1711.00688v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.