5 years ago

Molecularly Tailored Nickel Precursor and Support Yield a Stable Methane Dry Reforming Catalyst with Superior Metal Utilization

Molecularly Tailored Nickel Precursor and Support Yield a Stable Methane Dry Reforming Catalyst with Superior Metal Utilization
Frank Krumeich, Alexey Fedorov, Kim Larmier, Tigran Margossian, Christoph R. Müller, Christophe Copéret, Peter Chen, Sung Min Kim
Syngas production via the dry reforming of methane (DRM) is a highly endothermic process conducted under harsh conditions; hence, the main difficulty resides in generating stable catalysts. This can, in principle, be achieved by reducing coke formation, sintering, and loss of metal through diffusion in the support. [{Ni(μ2-OCHO)(OCHO)(tmeda)}22-OH2)] (tmeda = tetramethylethylenediamine), readily synthesized and soluble in a broad range of solvents, was developed as a molecular precursor to form 2 nm Ni(0) nanoparticles on alumina, the commonly used support in DRM. While such small nanoparticles prevent coke deposition and increase the initial activity, operando X-ray Absorption Near-Edge Structure (XANES) spectroscopy confirms that deactivation largely occurs through the migration of Ni into the support. However, we show that Ni loss into the support can be mitigated through the Mg-doping of alumina, thereby increasing significantly the stability for DRM. The superior performance of our catalytic system is a direct consequence of the molecular design of the metal precursor and the support, resulting in a maximization of the amount of accessible metallic nickel in the form of small nanoparticles while preventing coke deposition.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01625

DOI: 10.1021/jacs.7b01625

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.