3 years ago

Hydrogen Bond Networks of Glycol Molecules on ZIF-8 Surfaces as Semipermeable Films for Efficient Carbon Capture

Hydrogen Bond Networks of Glycol Molecules on ZIF-8 Surfaces as Semipermeable Films for Efficient Carbon Capture
Guangjin Chen, Xianren Zhang, Dapeng Cao, Bei Liu, Jing Li
Efficient carbon capture is an essential step in many energy-related processes. Here, we use molecular dynamics simulations and free energy analysis to investigate the inherent implication of the ZIF-8/glycol slurry based adsorption and absorption hybrid technique for carbon capture. Our results reveal that the formation of two-layer ordered hydrogen bond (HB) networks of glycol molecules on the ZIF-8 surface is the physical origin of the high efficiency of using ZIF-8/glycol slurry for carbon capture. It is found that the film composed of two-layer HB networks acts as a selective gatekeeper, allowing the penetration of CO2 molecules but efficiently blocking CH4. The interaction between the HB-forming solvent and ZIF-8 is the key to the formation of the semipermeable film, while the solute–solvent interaction is essential for film crossing. Finally, we discuss the basis for the design of highly efficient nanopore/slurry system for filtering and separation technologies. The uncovered mechanism for the hybrid technique opens up an exciting strategy for highly efficient CO2 separation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09068

DOI: 10.1021/acs.jpcc.7b09068

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.