3 years ago

Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li2Ru0.5Mn0.5O3 Investigated in a Wide Voltage Window

Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li2Ru0.5Mn0.5O3 Investigated in a Wide Voltage Window
Xiqian Yu, Enyuan Hu, Hong Li, Dongdong Xiao, Xiao-Qing Yang, Khalil Amine, Steven N. Ehrlich, Lin Gu, Yingchun Lyu, Yi Wang, Guiliang Xu
Li2Ru0.5Mn0.5O3, a high capacity lithium-rich layered cathode material for lithium-ion batteries, was subject to comprehensive diagnostic studies, including in situ/ex situ X-ray diffraction, X-ray absorption spectroscopy (XAS), pair distribution function, and high resolution scanning transmission electron microscopy analysis, to understand the correlations between transition-metal chemistry, structure, and lithium storage electrochemical behavior. Ru–Ru dimers were identified in the as-prepared sample and found to be preserved upon prolonged cycling. Presence of these dimers, which are likely caused by the delocalized nature of 4d electrons, is found to favor the stabilization of the structure in a layered phase. The in situ XAS results confirm the participation of oxygen redox into the charge compensation at high charge voltage, and the great flexibility of the covalent bond between Ru and O may provide great reversibility of the global structure despite the significant local distortion around Ru. In contrast, the local distortion around Mn occurs at low discharge voltage and is accompanied by a layered to 1T phase transformation, which is found to be detrimental to the cycle performances. It is clear that the changes of local structure around individual transition-metal cations respond separately and differently to lithium intercalation/deintercalation. Cations with the capability to tolerate the lattice distortion will be beneficial for maintaining the integrality of the crystal structure and therefore is able to enhance the long-term cycling performance of the electrode materials.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02299

DOI: 10.1021/acs.chemmater.7b02299

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.