3 years ago

Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations

Wei Zou, Changfeng Li, Sharif S. Nada, Robert G. Gilbert


Amylose, one of the components of starch, is a glucose polymer consisting largely of long, linear chains with a few long-chain branch points. The chain-length (molecular weight) distribution (CLD) of the component chains of amylose can provide information on amylose biosynthesis-structure-property relations, as has been done previously by fitting amylopectin CLDs to a model with physically meaningful parameters. Due to the presence of long chains, the CLD of amylose can currently best be obtained by size-exclusion chromatography, a technique that suffers from band-broadening effects which alter the observed distribution. The features of the multiple regions present in amylose chain-length distributions are also difficult to resolve, an issue that combines with band broadening to compound the difficulty of analysis and subsequent parameterization of the structural characteristics of amylose. A new method is presented to fit these distributions with biologically meaningful parameters in a way that accounts for band broadening. This is achieved by assuming that band broadening takes the form of a simple Gaussian over a relatively small region and that chain stoppage is a random process independent of the length of the substrate chain over the same region; these assumptions are relatively weak and expected to be frequently applicable. The method provides inbuilt consistency tests for its applicability to a given data set and, in cases where it is applicable, allows for the first nonempirical parameterization of amylose biosynthesis-structure-property relations from CLDs by using parameters directly linked to the activities of the enzymes responsible for chain growth and chain stoppage.

Graphical abstract

Model calculation illustrating the method described and showing the division between the three characteristic regions of a typical amylose chain-length distribution

Publisher URL: https://link.springer.com/article/10.1007/s00216-017-0639-5

DOI: 10.1007/s00216-017-0639-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.