3 years ago

Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake

Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake
We propose for the first time an acetic acid (AcOH)-fragmented linker co-assembly strategy to create mesoporous defects in a microporous metal–organic framework (MOF), HKUST-1. By using various methods, including 1H NMR, FT-IR and XPS, we confirmed the successful co-assembly of AcOH fragments into the HKUST-1 structure. The prepared AcOH-fragmented HKUST-1 materials showed improved methane uptake (13% higher storage capacity at 65 bar and 16% higher deliverable capacity between 65 bar and 5 bar) and greatly increased surface areas (from 1787 to 2396 m2/g) and pore volumes (from 0.77 to 1.20 cc/g) compared to the parent HKUST-1. This is remarkable because HKUST-1 is considered to be one of the most promising materials for methane storage. Furthermore, we propose possible scenarios of defect formation in the AcOH-fragmented HKUST-1 materials from simulations of several hypothetical structures. This AcOH-fragmented linker co-assembly strategy could be compatible with a large number of carboxylate-based MOFs.

Publisher URL: www.sciencedirect.com/science

DOI: S138589471731793X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.