3 years ago

Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance

Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance
Herein a simple approach is proposed to greatly improve the photocatalytic performance of a porphyrinic metal organic framework (PCN-224) by implantation of coordinatively unsaturated Fe(III) sites into the porphyrin unit. Taking the photooxidation of isopropanol (IPA) as a model reaction, the newly developed Fe@PCN-224 exhibits significantly enhanced photocatalytic activity, which is equivalent to an 8.9-fold improvement in acetone evolution rate and 9.3-fold enhancements in CO2 generation rate compared with the PCN-224. Mechanism investigation reveals that the presence of Fe(III) sites in the PCN-224 can not only greatly boost the electron–hole separation efficiency, but also effectively convert the in-situ photogenerated inactive H2O2 into reactive oxygen-related radicals via Fenton reactions to participate in the photocatalytic IPA oxidation. The enhanced photocatalytic activity for IPA oxidation is also observed over another Fe(III) implanted porphyrinic metal organic framework (Fe@PCN-222), suggesting the generality of this strategy.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317310068

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.