3 years ago

Multifunctional Bi-Layered Tribofilm Generated on Steel Contact Interfaces under High-Temperature Melt Lubrication

Multifunctional Bi-Layered Tribofilm Generated on Steel Contact Interfaces under High-Temperature Melt Lubrication
Bach H. Tran, Mitchell J. Nancarrow, Shanhong Wan, David R. G. Mitchell, Hongtao Zhu, Anh Kiet Tieu
The extreme state of high friction, severe wear, and oxidation invariably occur in mechanical contacts during high temperature steel processing. The application of lubricant to mitigate the aforementioned hindrances can enhance the process performance effectively. Melt lubricants are regarded as a highly promising class due to their good thermal stability and unique physical chemistry. The present study evaluates tribological responses of an alkaline metal borate on steel tribo-pair at 800 °C by ball-on-disk testing. It has been found that the borate melt significantly reduces the friction coefficient and the wear loss in accompany with providing excellent oxidation resistance. On the disk, the formation of a bilayered tribofilm dominates synergistic functionalities while the emergence of an ultrafine-grained layer considerably reinforces the interface integrity of the opposing ball. Cross-sectional examinations of the contact interfaces were carried out on both steel counterparts by FIB/STEM. STEM/HAADF-EDS reveal the formation of a boundary film featuring high concentration of B and significant depletion of O superimposed on a Na-rich film on the rubbing disk. On the opposing surface, a chemically complex film consisting of Na, Fe, O, amorphous C and [3]B which resides on nanograins of iron oxide is evidenced by STEM/EELS-EDS.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06874

DOI: 10.1021/acs.jpcc.7b06874

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.