3 years ago

Composition-Dependent Electrocatalytic Activity of Cobalt Sulfides for Triiodide Reduction in Dye-Sensitized Solar Cells

Composition-Dependent Electrocatalytic Activity of Cobalt Sulfides for Triiodide Reduction in Dye-Sensitized Solar Cells
Min Soo Kim, Jin Ho Bang
A new nanoarchitecture of cobalt sulfide (CoSx) is designed by exploiting a Prussian blue analogue. Depending on the sulfidation temperatures, CoSx materials with different compositions and morphologies are obtained. This investigation of the composition-dependent electrocatalytic activity of CoSx for triiodide reduction reaction (IRR) reveals that sulfur-deficient CoSx is more active than sulfur-rich CoSx. When utilized in dye-sensitized solar cells (DSSCs), sulfur-deficient CoSx with a hollow nanocube morphology outperforms platinum (Pt), showing great promise as a Pt alternative. This composition dependency on IRR is attributed to different surface characteristics and electrical properties that vary with CoSx composition. This work highlights the importance of understanding the surface properties of sulfide-based electrocatalysts that are intimately dictated by their compositions as part of a new design principle for a highly active electrocatalyst.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08449

DOI: 10.1021/acs.jpcc.7b08449

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.