5 years ago

Roles of a mitochondrial AccSCO2 gene from Apis cerana cerana in oxidative stress responses

Roles of a mitochondrial AccSCO2 gene from Apis cerana cerana in oxidative stress responses
In eukaryotes, cytochrome c oxidase (COX) is a multimeric protein complex that is the last enzyme in the respiratory electron transport chain of mitochondria. Syntheses of cytochrome c oxidase (SCO) proteins are copper-donor chaperones involved in metalation of the CuA redox center of COX. However, its other precise actions are not yet understood. Here, we report the characterization of AccSCO2 from Apis cerana cerana (Acc). Our data showed that AccSCO2 expression was induced by cold (4°C), CdCl2, HgCl2, ultraviolet (UV) light, and H2O2 and was inhibited by different pesticide treatments. In addition, a disc diffusion assay of recombinant AccSCO2, AccSCO2-R1, and AccSCO2-R2 proteins showed that they played a functional role in protecting cells from oxidative stress involved in copper-dependent manner. Further, following knockdown of AccSCO2 in A. cerana cerana using RNA interference (RNAi), the expression levels of most antioxidant genes (AccGSTD, AccGSTO1, AccGSTS4, AccSOD1, AccSOD2, etc.) were significantly decreased in the AccSCO2-silenced bees compared with the control bees. Moreover, the antioxidant enzymatic activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were all lower in the silenced bees than in the control bees. Finally, the in vivo activity of COX was measured after AccSCO2 knockdown, which revealed a strong reduction in COX activity in the silenced bees. Thus, we hypothesize that AccSCO2 plays important roles in cellular stress responses and anti-oxidative processes, which help to regulate the production of mitochondrial reactive oxygen species and/or the impairment of mitochondrial activity under oxidative stress.

Publisher URL: www.sciencedirect.com/science

DOI: S016201341630544X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.