3 years ago

Transfer-free growth of polymer-derived graphene on dielectric substrate from mobile hot-wire-assisted dual heating system

Transfer-free growth of polymer-derived graphene on dielectric substrate from mobile hot-wire-assisted dual heating system
Chemical vapor deposition (CVD) is the most promising, relatively inexpensive approach for the growth of high quality graphene. However, the need to transfer the graphene to dielectric substrates limits its usage in electronic applications. Here, we demonstrate transfer-free growth of graphene on dielectric substrates via mobile hot-wire (MHW) assisted dual heating system (DHS). MHW is utilized as independent heat source over polymer/Ni/SiO2/Si, which is placed on a bottom heater. The hot-wire scan speed (Vw, 0.01–40 mm/min) and temperature (Tw) are varied to control the diffusion kinetics and amount of carbon source into nickel by changing the cooling rate of hot zone where nucleation and growth of graphene occurs between Ni and SiO2. The optimum growth condition for single-layer graphene is further verified through controlling the substrate temperature (Tsub, 430–630 °C). We also improve coverage of graphene by changing polymers as a function of thermal stability. The results show that thermal decomposition temperature determines the amount of the carbon dissolved into nickel for graphene growth. Through our synthesis, we can obtain nearly full-coverage of single-layer graphene. We believe our simple method of growing graphene is potentially scalable and advances the possibility of various electrical and optical applications.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317310631

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.