3 years ago

Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo

Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo
Yuchao Zhang, Jun-Jie Zhu, Bohan Ma, Penghui Zhang, Qi Shen, Jing Lian, Tingting Xu, Chen Wang, Yongping Shao, Feng Xu, Jianxin Li, Yan Wang
Nanocarrier surface chemistry plays a vital role in mediating cell internalization and enhancing delivery efficiency during in vivo chemotherapy. Inspired by the ability of proteins to alter their conformation to mediate functions, a pH-/thermal-/glutathione-responsive polymer zipper consisting of cell-penetrating poly(disulfide)s and thermosensitive polymers bearing guanidinium/phosphate (Gu+/pY−) motifs to spatiotemporally tune the surface composition of nanocarriers for precise tumor targeting and efficient drug delivery is developed. Surface engineering allows the nanocarriers to remain undetected during blood circulation and favors passive accumulation at tumor sites, where the acidic microenvironment and photothermal heating break the pY−/Gu+ binding and rupture the zipper, thereby exposing the penetrating shell and causing enhanced cellular uptake via counterion-/thiol-/receptor-mediated endocytosis. The in vivo study demonstrates that by manipulating the surface states on command, the nanocarriers show longer blood circulation time, minimized uptake and drug leakage in normal organs, and enhanced accumulation and efficient drug release at tumor sites, greatly inhibiting tumor growth with only slight damage to normal tissues. If integrated with a photothermal dye approved by the U.S. Food and Drug Administration (FDA), polymer zipper would provide a versatile protocol for engineering nanomedicines with high selectivity and efficiency for clinical cancer treatment. pH-/thermal-/glutathione-responsive polymer zippers are screened and explored to tune nanocarrier surface compositions on command for precise tumor targeting in vivo. The nanocarriers remain stealthy during blood circulation, but their surfaces are activated by the acidic microenvironment and photothermal heating at tumor sites for enhanced cellular uptake and efficient drug release, presenting a versatile engineering strategy for nanomedicinal use.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702311

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.