5 years ago

In Situ Two-Step Photoreduced SERS Materials for On-Chip Single-Molecule Spectroscopy with High Reproducibility

In Situ Two-Step Photoreduced SERS Materials for On-Chip Single-Molecule Spectroscopy with High Reproducibility
Peijie Wang, Zhipeng Li, Longkun Yang, Wenjie Yan, Yaqi Wu, Jianing Chen
A method is developed to synthesize surface-enhanced Raman scattering (SERS) materials capable of single-molecule detection, integrated with a microfluidic system. Using a focused laser, silver nanoparticle aggregates as SERS monitors are fabricated in a microfluidic channel through photochemical reduction. After washing out the monitor, the aggregates are irradiated again by the same laser. This key step leads to full reduction of the residual reactants, which generates numerous small silver nanoparticles on the former nanoaggregates. Consequently, the enhancement ability of the SERS monitor is greatly boosted due to the emergence of new “hot spots.” At the same time, the influence of the notorious “memory effect” in microfluidics is substantially suppressed due to the depletion of surface residues. Taking these advantages, two-step photoreduced SERS materials are able to detect different types of molecules with the concentration down to 10−13m. Based on a well-accepted bianalyte approach, it is proved that the detection limit reaches the single-molecule level. From a practical point of view, the detection reproducibility at different probing concentrations is also investigated. It is found that the effective single-molecule SERS measurements can be raised up to ≈50%. This microfluidic SERS with high reproducibility and ultrasensitivity will find promising applications in on-chip single-molecule spectroscopy. On-chip single-molecule surface-enhanced Raman scattering (SERS) monitors free of the “memory effect” are fabricated in microfluidics by the two-step photoreduction method. Proved by bianalyte statistics, on-chip single-molecule detection is accomplished. This is a quick and well-reproducible microfluidic SERS technique with the detection limit as low as 10−13m. At the single-molecule level, the detection reproducibility can reach up to 50%.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702893

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.