5 years ago

High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials

High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials
Qing Wang, Jianjun Wang, Nasim Alem, Bo Wang, Feihua Liu, Amin Azizi, Long-Qing Chen, Mohammed Abu AlSaud, Qi Li, Yi Wang, Matthew R. Gadinski
Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge–discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge–discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm−3, even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge–discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications. Hexagonal boron nitride films grown by chemical vapor deposition are readily transferred onto polymers, yielding sandwiched films exhibiting superior energy densities and greater efficiencies at high temperatures. This work enables the capacitive applications of engineering polymers in high-temperature electronics and energy devices, and also offers an efficient synthesis method for 2D nanomaterials at the scale demanded for applications.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701864

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.