4 years ago

Enhancing Performance of Nonfullerene Acceptors via Side-Chain Conjugation Strategy

Enhancing Performance of Nonfullerene Acceptors via Side-Chain Conjugation Strategy
Wei You, Wei Ma, Jiayu Wang, Wei Wang, Xiaowei Zhan, Cenqi Yan, Yang Wu, Qianqian Zhang, Xiaohui Wang
A side-chain conjugation strategy in the design of nonfullerene electron acceptors is proposed, with the design and synthesis of a side-chain-conjugated acceptor (ITIC2) based on a 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]di(cyclopenta-dithiophene) electron-donating core and 1,1-dicyanomethylene-3-indanone electron-withdrawing end groups. ITIC2 with the conjugated side chains exhibits an absorption peak at 714 nm, which redshifts 12 nm relative to ITIC1. The absorption extinction coefficient of ITIC2 is 2.7 × 105m−1 cm−1, higher than that of ITIC1 (1.5 × 105m−1 cm−1). ITIC2 exhibits slightly higher highest occupied molecular orbital (HOMO) (−5.43 eV) and lowest unoccupied molecular orbital (LUMO) (−3.80 eV) energy levels relative to ITIC1 (HOMO: −5.48 eV; LUMO: −3.84 eV), and higher electron mobility (1.3 × 10−3 cm2 V−1 s−1) than that of ITIC1 (9.6 × 10−4 cm2 V−1 s−1). The power conversion efficiency of ITIC2-based organic solar cells is 11.0%, much higher than that of ITIC1-based control devices (8.54%). Our results demonstrate that side-chain conjugation can tune energy levels, enhance absorption, and electron mobility, and finally enhance photovoltaic performance of nonfullerene acceptors. A side-chain conjugation strategy in the design of nonfullerene electron acceptors is proposed and the first example of a side-chain-conjugated fused-ring electron acceptor is presented. Polymer solar cells based on side-chain-conjugated ITIC2 show a champion power conversion efficiency of 11.0%, much higher than its counterpart ITIC1-based devices (8.54%).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702125

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.