3 years ago

A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments

A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments
Sangkuk Kim, Taiho Park, Taewan Kim, Seunghyeon Baek, Kijung Yong, Seunghyup Lee
As a promising means of solar energy conversion, photovoltaic (PV) cell-based electrolysis has recently drawn considerable attention for its effective solar fuel generation; especially the generation of hydrogen by solar water splitting. Inspired by remarkable accomplishments in enhancing the solar-to-hydrogen conversion efficiency, various efforts have aimed at fostering convenient and practical uses of PV electrolysis to make this technology ubiquitous, manageable, and efficient. Here, the design and function of a monolithic photoelectrolysis system—a so-called artificial leaf—for use in various environments are highlighted. The uniquely designed artificial-leaf system facilitates an unbiased water-splitting reaction by combining superstrate PV cells in series with single-face electrodes in a compact 2D catalytic configuration. Floatability is a new feature of the water-splitting artificial leaf; this feature maximizes solar light utilization and allows for easy retrieval for recycling. Additionally, its planar design enables operation of the device in water-scarce conditions. These characteristics endow the artificial leaf with versatility and a high adaptability to natural environments, widening the applicability of the device. A highly versatile and adaptable artificial leaf with floatability and planar compact design applicable in various natural environments is developed. Floatability is a new feature of the water-splitting artificial leaf; this feature maximizes solar light utilization and allows for easy retrieval for recycling. Additionally, its planar design enables operation of the device in water-scarce conditions.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702431

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.