3 years ago

Biotransporting Self-Assembled Nanofactories Using Polymer Vesicles with Molecular Permeability for Enzyme Prodrug Cancer Therapy

Biotransporting Self-Assembled Nanofactories Using Polymer Vesicles with Molecular Permeability for Enzyme Prodrug Cancer Therapy
Kazunari Akiyoshi, Yoshihiro Sasaki, Tomoki Nishimura
As “biotransporting nanofactories”, in vivo therapeutic biocatalyst nanoreactors would enable encapsulated enzymes to transform inert prodrugs or neutralize toxic compounds at target disease sites. This would offer outstanding potential for next-generation therapeutic platforms, such as enzyme prodrug therapy. Designing such advanced materials has, however, proven challenging. Here, it is shown that self-assembled nanofactories formulate with polymeric vesicles with an intrinsically permeable membrane. The vesicles, CAPsomes, are composed of carbohydrate-b-poly(propylene glycol) and show molecular-weight-depended permeability. This property enables CAPsomes to act as biocatalyst nanoreactors, protecting encapsulated enzymes from degradation while acting on low-molecular-weight substrates. In tumor bearing mice, combined treatment with enzyme-loaded CAPsomes and doxorubicin prodrug inhibit tumor growth in these mice without any observable toxicity. The results demonstrate, for the first time, in vivo therapeutic efficacy of CAPsomes as nanofactories for enzyme prodrug cancer therapy. Self-assembled nanofactories formulated with intrinsically molecular permeable polymer vesicles are reported. The vesicles are composed of maltooligosaccharide-b-poly(propylene glycol) and have molecular-weight-dependent permeable membrane. Because of this permeability, the vesicles serve as nanofactories that can transform prodrugs into drugs in vivo for cancer therapy.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702406

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.