3 years ago

High thermoelectric performance and low thermal conductivity in Cu2−yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures

High thermoelectric performance and low thermal conductivity in Cu2−yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures
Mosaic-crystal microstructure is one of the optimal strategies for decoupling and balancing thermal and electrical transport properties in thermoelectric materials. Herein, we successfully achieve the desired nanoscale mosaic structures in triple-component Cu2−yS1/3Se1/3Te1/3 solid solutions using Cu2S, Cu2Se, and Cu2Te matrix compounds. They are solved in hexagonal structures with space group R 3 ̅ m by means of single crystal structural solution and Rietveld refinement. Electron backscatter diffraction measurements show that all the samples are polycrystalline compounds with the grain size in the range of micrometers. However, transmission electron microscopic study reveals that these microscale grains are quasi-single crystals consist of a variety of 10–30nm mosaic grains. Each mosaic grain is a perfect crystal but titled or rotated with respect to others by a very small angle. In this case, excellent electrical transports are maintained but exceptional low thermal conductivity is achieved throughout the whole temperature range, which is attributed to the combined phonon scatterings by point defects, liquid-like copper ions, and lattice strains or interfaces of mosaic nanograins. Combining all these favorable factors, remarkably high thermoelectric performance is achieved in Cu1.98S1/3Se1/3Te1/3 with a maximum zT of 1.9 at 1000K.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306456

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.