3 years ago

Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis

Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis
Many recent advances in creating heterostructures based on 2D materials have opened new possibilities in catalysis. This study prepared a new 2D hybrid photocatalyst (CBN-x) consisting of CN and h-BN using low-cost precursors (urea and boric acid). The effects of CN loading on the structure, surface chemistry and photocatalytic activities were systematically investigated. The photocatalytic activities of CBN-x samples were tested for the production of H2 and H2O2, which demonstrated markedly enhanced activities without the need of noble metal co-catalysts. However, CBN-x activities for the photocatalytic oxidation of organic compound were not better than that of h-BN. Loading CN on h-BN sheets, C 2p and N 2p orbitals from CN introduce new valence and conduction band edges, which gradually narrowed the bandgap and enhanced light absorption efficiency of the hybrid photocatalysts. In such metal-free systems, electrons generated in CN transfer to h-BN, while photogenerated holes on h-BN transfer to CN, which enhances the charge separation through the heterojunction interface (CN/BN). Therefore, increasing the CN loading enhances the overall efficiency of photocatalysis until excessive loading of CN covers the active sites on h-BN.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306481

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.