3 years ago

A bioinspired capillary-driven pump for solar vapor generation

A bioinspired capillary-driven pump for solar vapor generation
Harvesting solar energy for vapor generation has attracted large amount of attention due to its promise for applications in water purification, desalination, power generation, and so on. Many structures based on the two-layered design or the plasmonic enhanced evaporation have been reported to promote the efficiency of solar vapor generation. Inspired by the transpiration phenomenon in plant, we report that a capillary-driven pump can be used for highly efficient solar vapor generation. The pump is mainly consisted of a porous hydrophilic modified NiO (M-NiO) disc and a one-dimension water supply channel. The M-NiO with a three-layered structured TiAlON-based nanocomposite absorber deposited on its surface can efficiently capture solar radiation (absorptance of 0.97). Driven by the capillary force in the porous M-NiO, the pump can continuously wick water via the one-dimension channel to the solar absorber for evaporation, achieving solar-to-vapor efficiency of 73% at 1 sun and 90% at 4 suns. The high conversion efficiency can be attributed to the high absorption ability of the M-NiO disc and the one-dimension water supply design to limit the thermal loss. This new design with advantage of easy scale-up provides an efficient approach to harvest sunlight for solar vapor generation in low solar concentrations.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306432

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.