5 years ago

Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics
Shang-Lin Hsu, Andrew M. Rappe, Shi Liu, Colin Ophus, Andrew M. Minor, Yubo Qi, Shishir Pandya, Josh C. Agar, Anoop R. Damodaran, Christopher Nelson, Liv R. Dedon, , Jialan Zhang, Peter Ercius, , Lane W. Martin, Arvind Dasgupta, Hongling Lu
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1−xSrxTiO3 films which result in spatial polarization gradients as large as 35 μC cm−2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ɛr≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.

Publisher URL: http://www.nature.com/articles/ncomms14961

DOI: 10.1038/ncomms14961

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.