3 years ago

Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus

Grass carp reovirus (GCRV), a member of the Aquareovirus genus in the Reoviridae family, is considered the most pathogenic aquareovirus. However, its productive viral entry pathways remain largely unclear. Using a combination of quantum dot (QD)-based live-virus tracking and biochemical assays, we found that extraction of cellular membrane cholesterol with methyl-β-cyclodextrin (MβCD) and nystatin strongly inhibited the internalization of GCRVs, and supplementation with cholesterol restored viral infection. In addition, the entry of the virus was restrained by genistein, an inhibitor known to block caveolar endocytosis. Subsequent real-time tracking experiments revealed that the QD-labeled GCRV particles were colocalized with caveolin-1, and transfection of cells with dominant-negative mutant (caveolin-1 Y14F) significantly reduced GCRV infection. In contrast, no effects on virus infection were detected when the clathrin-mediated endocytosis or the macropinocytosis inhibitors were used. Our results collectively suggest that aquareoviruses can use caveolae/raft-mediated endocytosis as the primary entry pathway to initiate productive infection.

Publisher URL: www.sciencedirect.com/science

DOI: S0042682217303288

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.