3 years ago

Optochemically Responsive 2D Nanosheets of a 3D Metal–Organic Framework Material

Optochemically Responsive 2D Nanosheets of a 3D Metal–Organic Framework Material
Jin-Chong Tan, Abhijeet K. Chaudhari, Intaek Han, Ha Jin Kim
Outstanding functional tunability underpinning metal–organic framework (MOF) confers a versatile platform to contrive next-generation chemical sensors, optoelectronics, energy harvesters, and converters. A rare exemplar of a porous 2D nanosheet material constructed from an extended 3D MOF structure is reported. A rapid supramolecular self-assembly methodology at ambient conditions to synthesize readily exfoliatable MOF nanosheets, functionalized in situ by adopting the guest@MOF (host) strategy, is developed. Nanoscale confinement of light-emitting molecules (as functional guest) inside the MOF pores generates unusual combination of optical, electronic, and chemical properties, arising from the strong host–guest coupling effects. Highly promising photonics-based chemical sensing opened up by the new guest@MOF composite systems is shown. By harnessing host–guest optochemical interactions of functionalized MOF nanosheets, detection of an extensive range of volatile organic compounds and small molecules important for many practical applications has been accomplished. A rapid supramolecular method to synthesize the “OX-1” (Oxford University-1) nanosheet metal–organic framework (MOF), functionalized adopting the guest@MOF strategy, is reported. Nanoscale confinement of light-emitting guest molecules in the OX-1 pores yields remarkable optical, electronic, and chemical properties. Harnessing reversible host–guest interactions, photochemical sensing of volatile organic compounds and small molecules important for many practical applications is demonstrated.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701463

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.