5 years ago

Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS2 Monolayers by Alkali Metal Halides

Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS2 Monolayers by Alkali Metal Halides
Dmitrii Unuchek, Dmitry Ovchinnikov, HoKwon Kim, Andras Kis, Davide Deiana
Toward the large-area deposition of MoS2 layers, we employ metal–organic precursors of Mo and S for a facile and reproducible van der Waals epitaxy on c-plane sapphire. Exposing c-sapphire substrates to alkali metal halide salts such as KI or NaCl together with the Mo precursor prior to the start of the growth process results in increasing the lateral dimensions of single crystalline domains by more than 2 orders of magnitude. The MoS2 grown this way exhibits high crystallinity and optoelectronic quality comparable to single-crystal MoS2 produced by conventional chemical vapor deposition methods. The presence of alkali metal halides suppresses the nucleation and enhances enlargement of domains while resulting in chemically pure MoS2 after transfer. Field-effect measurements in polymer electrolyte-gated devices result in promising electron mobility values close to 100 cm2 V–1 s–1 at cryogenic temperatures.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02311

DOI: 10.1021/acs.nanolett.7b02311

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.