5 years ago

Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2

Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2
Alejandro Molina-Sánchez, Andrea Marini, Ludger Wirtz, Davide Sangalli
In single-layer WSe2, a paradigmatic semiconducting transition metal dichalcogenide, a circularly polarized laser field can selectively excite electronic transitions in one of the inequivalent K± valleys. Such selective valley population corresponds to a pseudospin polarization. This can be used as a degree of freedom in a “valleytronic” device provided that the time scale for its depolarization is sufficiently large. Yet, the mechanism behind the valley depolarization still remains heavily debated. Recent time-dependent Kerr experiments have provided an accurate way to visualize the valley dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized pump pulse. We present here a clear, accurate and parameter-free description of the valley dynamics. By using an atomistic, ab initio approach, we fully disclose the elemental mechanisms that dictate the depolarization effects. Our results are in excellent agreement with recent time-dependent Kerr experiments. We explain the Kerr dynamics and its temperature dependence in terms of electron–phonon-mediated processes that induce spin–flip intervalley transitions.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b00175

DOI: 10.1021/acs.nanolett.7b00175

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.