3 years ago

Forecasting range shifts of a cold-adapted species under climate change: Are genomic and ecological diversity within species crucial for future resilience?

Spyros Theodoridis, Christophe Randin, Theofania S. Patsiou, Elena Conti
Cold-adapted taxa are experiencing severe range shifts due to climate change and are expected to suffer a significant reduction of their climatically suitable habitats in the next few decades. However, it has been proposed that taxa with sufficient standing genetic and ecologic diversity will better withstand climate change. These taxa are typically more broadly distributed in geographic and ecological niche space, therefore they are likely to endure higher levels of populations loss than more restricted, less diverse taxa before the effects of those losses impact their overall diversity and resilience. Here, we explore the potential relationship between intraspecific genetic and ecological diversity and future resilience, using the cold-adapted plant Primula farinosa. We employ high-throughput sequencing to assess the genomic diversity of phylogeographic lineages in P. farinosa. Additionally, we use current climatic variables to define niche breadth and niche differentiation across lineages. Finally, we calibrate Species Distribution Models (SDMs) and project the climatic preferences of each lineage on future climate to predict lineage-specific shifts in climatically suitable habitats. Our study predicts relative persistence of future suitable habitats for the most genetically and ecologically diverse lineages of the cold-adapted P. farinosa, but significant reduction of them for two out of its four lineages. While we do not provide specific experiments aimed at identifying the causal links between genetic diversity and resilience to climate change, our results indicate that greater genetic diversity and wider ecological breadth may buffer species responses to rapid climatic changes. This study further highlights the importance of integrating knowledge of intraspecific diversity for predicting species fate in response to climate change. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/ecog.03346

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.