5 years ago

Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors

Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors
Yuh-Chen Lin, Katherine Price, Felicia A. McGuire, Sayeef Salahuddin, Aaron D. Franklin, Sourabh Khandelwal, G. Bruce Rayner
It has been shown that a ferroelectric material integrated into the gate stack of a transistor can create an effective negative capacitance (NC) that allows the device to overcome “Boltzmann tyranny”. While this switching below the thermal limit has been observed with Si-based NC field-effect transistors (NC-FETs), the adaptation to 2D materials would enable a device that is scalable in operating voltage as well as size. In this work, we demonstrate sustained sub-60 mV/dec switching, with a minimum subthreshold swing (SS) of 6.07 mV/dec (average of 8.03 mV/dec over 4 orders of magnitude in drain current), by incorporating hafnium zirconium oxide (HfZrO2 or HZO) ferroelectric into the gate stack of a MoS2 2D-FET. By first fabricating and characterizing metal–ferroelectric–metal capacitors, the MoS2 is able to be transferred directly on top and characterized with both a standard and a negative capacitance gate stack. The 2D NC-FET exhibited marked enhancement in low-voltage switching behavior compared to the 2D-FET on the same MoS2 channel, reducing the SS by 2 orders of magnitude. A maximum internal voltage gain of ∼28× was realized with ∼12 nm thick HZO. Several unique dependencies were observed, including threshold voltage (Vth) shifts in the 2D NC-FET (compared to the 2D-FET) that correlate with source/drain overlap capacitance and changes in HZO (ferroelectric) and HfO2 (dielectric) thicknesses. Remarkable sub-60 mV/dec switching was obtained from 2D NC-FETs of various sizes and gate stack thicknesses, demonstrating great potential for enabling size- and voltage-scalable transistors.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01584

DOI: 10.1021/acs.nanolett.7b01584

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.