5 years ago

Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores

Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores
Massimiliano Di Ventra, Michael Zwolak, Subin Sahu
Ion channels play a key role in regulating cell behavior and in electrical signaling. In these settings, polar and charged functional groups, as well as protein response, compensate for dehydration in an ion-dependent way, giving rise to the ion selective transport critical to the operation of cells. Dehydration, though, yields ion-dependent free-energy barriers and thus is predicted to give rise to selectivity by itself. However, these barriers are typically so large that they will suppress the ion currents to undetectable levels. Here, we establish that graphene displays a measurable dehydration-only mechanism for selectivity of K+ over Cl. This fundamental mechanism, one that depends only on the geometry and hydration, is the starting point for selectivity for all channels and pores. Moreover, while we study selectivity of K+ over Cl we find that dehydration-based selectivity functions for all ions, that is, cation over cation selectivity (e.g., K+ over Na+). Its likely detection in graphene pores resolves conflicting experimental results, as well as presents a new paradigm for characterizing the operation of ion channels and engineering molecular/ionic selectivity in filtration and other applications.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01399

DOI: 10.1021/acs.nanolett.7b01399

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.