3 years ago

Biohydrogen production at pH below 3.0: Is it possible?

Biohydrogen production at pH below 3.0: Is it possible?
Biological hydrogen production was investigated in continuous acidogenic reactors fed with sucrose at 30 °C without pH control. In the first experimental phase, three reactors were compared: a structured fixed-bed (FB), a granular UASB (UG) and a flocculent UASB (UF-1). They were run at 3.3 h HRT and 33 gCOD L−1d−1 OLR. Hydrogen production occurred throughout the experimental period with an average effluent pH of only 2.8. The FB, UG and UF-1 reactors presented volumetric hydrogen production rates (VHPR) of 95 ± 69, 45 ± 37 and 54 ± 32 mLH2 L−1h−1, respectively; and H2 yields (HY) of 1.5 ± 0.8, 0.8 ± 0.6 and 1.2 ± 0.7 molH2 mol−1 sucroseconsumed, respectively. The UF-1 reactor showed intermediate VHPR and HY, but no declining trend, contrary to what was observed in the FB reactor. Thus, aiming at continuous and long-term H2 production, a flocculent UASB was applied in the second experimental phase. In this phase, the HRT of the acidogenic reactor, which was named UF-2, was raised to 4.6 h, resulting in an OLR of 25 gCOD L−1d−1. The VHPR and the HY increased considerably to 175 ± 44 mLH2 L−1h−1 and 3.4 ± 0.7 molH2 mol−1 sucroseconsumed, respectively. These improvements were accompanied by greater sucrose removal, higher suspended biomass concentration, less production of lactate and more of acetate, and high ethanol concentration. Contradicting the current published literature data that reports strong inhibition of H2 production by dark fermentation at pH less than 4.0, the UF-2 reactor presented stable, long-term H2 production with satisfactory yields at pH 2.7 on average. 16 S rDNA sequencing revealed that two sequences assigned as Ethanoligenens and Clostridium accounted for over 70% of the microbiota in all the reactors. The non-necessity of adding alkalizing agents and the successful H2 production under very acid conditions, demonstrated in this study, open a new field of investigation in biological hydrogen production by dark fermentation towards a more sustainable and feasible technology.

Publisher URL: www.sciencedirect.com/science

DOI: S004313541730903X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.