3 years ago

Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China

Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China
The rapid expansion of construction related to coastal development evokes great concern about environmental risks. Recent attention has been focused mainly on factors related to the effects of waterlogging, but there is urgent need to address the potential hazard caused by artificial topography: derived changes in the elemental composition of the sediments. To reveal possible mechanisms and to assess the environmental risks of artificial topography on transition of elemental composition in the sediment at adjoining zones, a nest-random effects-combined investigation was carried out around a semi-open seawall. The results implied great changes induced by artificial topography. Not only did artificial topography alter the sediment elemental composition at sites under the effect of artificial topography, but also caused a coupling pattern transition of elements S and Cd. The biogeochemical processes associated with S were also important, as suggested by cluster analysis. The geo-accumulation index shows that artificial topography triggered the accumulation of C, N, S, Cu, Fe, Mn, Zn, Ni, Cr, Pb, As and Cd, and increased the pollution risk of C, N, S, Cu, As and Cd. Enrichment factors reveal that artificial topography is a new type of human-activity-derived Cu contamination. The heavy metal Cu was notably promoted on both the geo-accumulation index and the enrichment factor under the influence of artificial topography. Further analysis showed that the Cu content in the sediment could be fitted using equations for Al and organic carbon, which represented clay mineral sedimentation and organic matter accumulation, respectively. Copper could be a reliable indicator of environmental degradation caused by artificial topography.

Graphical abstract



Artificial topography increases pollution risks and artificial impacts. Cu could be an admissible indicator for this process.

Publisher URL: www.sciencedirect.com/science

DOI: S0269749117305225

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.