5 years ago

Chip-Based All-Optical Control of Single Molecules Coherently Coupled to a Nanoguide

Chip-Based All-Optical Control of Single Molecules Coherently Coupled to a Nanoguide
Nir Rotenberg, Stephan Götzinger, Irina Harder, Pierre Türschmann, Tobias Utikal, Olga Lohse, Vahid Sandoghdar, Jan Renger
The feasibility of many proposals in nanoquantum-optics depends on the efficient coupling of photons to individual quantum emitters, the possibility to control this interaction on demand, and the scalability of the experimental platform. To address these issues, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. We discuss the design and fabrication requirements, present data on extinction spectroscopy of single molecules coupled to a nanoguide mode, and show how an external optical beam can switch the propagation of light via a nonlinear optical process. The presented architecture paves the way for the investigation of many-body phenomena and polaritonic states and can be readily extended to more complex geometries for the realization of quantum integrated photonic circuits.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02033

DOI: 10.1021/acs.nanolett.7b02033

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.