3 years ago

Design, synthesis and activity evaluation study of novel substituted N -sulfonyl homoserine lactone derivatives as bacterial quorum sensing inhibitors

Junhai Xiao, Mingming Zhao, Fanhao Meng, Jingwei Liang, Qi Sun

Abstract

A novel series of N-sulfonyl homoserine lactone derivatives 7a7m has been designed, synthesized, and evaluated for quorum sensing inhibitory activities through the violacein inhibition in Chromobacterium violaceum CV026. Compound 7e displayed the high level of inhibitory activity among all the compounds synthesized. Studies of structure-activity relationship indicated that compounds with thiophene group in side chain showed better activity than those substituted by furan, pyrrole, pyridyl, and phenethyl group. Thiophene substituted compounds which connected electron withdrawing group exhibited better inhibitory activity relate to those connected electron donating group. Further analysis indicated that compound bearing an electron withdrawing substituent at the position 2 of their thiophene ring exhibited superior activity against violacein production to those bearing the substituent at the position 3 and 4. Compound 7e in particular, with IC50 value of 6.19 µM, were identified as promising lead compounds for further development.

Publisher URL: https://link.springer.com/article/10.1007/s00044-017-2027-2

DOI: 10.1007/s00044-017-2027-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.