5 years ago

Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors

Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors
C. K. Luscombe, J. S. Harrison, L. Q. Flagg, R. Giridharagopal, D. S. Ginger, M. E. Ziffer, J. Onorato
Ionic transport phenomena in organic semiconductor materials underpin emerging technologies ranging from bioelectronics to energy storage. The performance of these systems is affected by an interplay of film morphology, ionic transport and electronic transport that is unique to organic semiconductors yet poorly understood. Using in situ electrochemical strain microscopy (ESM), we demonstrate that we can directly probe local variations in ion transport in polymer devices by measuring subnanometre volumetric expansion due to ion uptake following electrochemical oxidation of the semiconductor. The ESM data show that poly(3-hexylthiophene) electrochemical devices exhibit voltage-dependent heterogeneous swelling consistent with device operation and electrochromism. Our data show that polymer semiconductors can simultaneously exhibit field-effect and electrochemical operation regimes, with the operation modality and its distribution varying locally as a function of nanoscale film morphology, ion concentration and potential. Importantly, we provide a direct test of structure–function relationships by correlating strain heterogeneity with local stiffness maps. These data indicate that nanoscale variations in ion uptake are associated with local changes in polymer packing that may impede ion transport to different extents within the same macroscopic film and can inform future materials optimization.

Publisher URL: http://dx.doi.org/10.1038/nmat4918

DOI: 10.1038/nmat4918

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.