3 years ago

Metabolite signatures of diabetes with cardiovascular disease: a pilot investigation

Jairam K. P. Vanamala, Bishwa R. Sapkota, Yundi Liang, Evgeny Sidorov, Lavanya Reddivari, Dharambir K. Sanghera, Apoorva Rudraraju, Christopher Aston

Abstract

Introduction

Type 2 diabetes (T2D) is an independent risk factor in the development of cardiovascular disease. However, there are significant limitations in the detection of the metabolic disturbances in hyperglycemia that lead to vascular dysfunction.

Objectives

The goals of the study were: (i) to identify circulating metabolites discriminating T2D and normoglycemia, and (ii) to assess phenotypic correlations of identified metabolites with other cardiometabolic risk traits (CMTs).

Methods

We have generated global and targeted metabolomic profiles using AB Sciex TripleTOF 5600 and Thermo Scientific Q Exactive Plus using serum samples of patients and healthy controls from a Punjabi population from India.

Results

In global profiling, we identified eight unknown molecules that currently do not match to any spectra in public databases. Additionally, serum levels of pyroglutamate, imidazole-4-acetate, tyramine-O-sulphate and 2,3-diphosphoglycerate were significantly elevated (2–5 fold) and betaine-aldehyde was reduced (fourfold) in patients. In targeted screening of amino acids and sugars, increased concentrations of serine, inositol, and threonine strongly correlated with T2D in both genders, while N-acetyl-l-alanine was reduced (58 fold) in men and glutamine was increased (fourfold) in women. Using random forest and ROC (AUC) analyses, we further cross-validated the predictive abilities of these molecules. Inositol, serine and threonine were among the top informative biomarkers in both genders while N-acetyl-l-alanine was highly confined to men.

Conclusions

Our study has identified several metabolites whose concentrations were altered in T2D. Although further study is needed in larger datasets, the identified metabolites (unknown or known) point towards shared etiological pathways underlie diabetes and vascular disease which can be targeted for potential therapeutics or biomarkers discovery.

Publisher URL: https://link.springer.com/article/10.1007/s11306-017-1278-8

DOI: 10.1007/s11306-017-1278-8

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.