3 years ago

An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures

An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures
L. L. Bao, X. S. Zhao, X. W. Zhao, Q. Ning, J. C. Ji
The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called high-dimensional small-sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high-throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two-stage approach, where three filter methods including the Fisher score, T-statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self-adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross-validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/minf.201700081

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.