3 years ago

A Materials Roadmap to Functional Neural Interface Design

A Materials Roadmap to Functional Neural Interface Design
John P. Seymour, James R. Eles, Takashi D. Y. Kozai, Nicholas J. Michelson, Kip A. Ludwig, Steven M. Wellman, Alberto L. Vazquez, William E. McFadden
Advancements in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminishes the quality of the interface overtime. Recent advances in functional materials are aimed at engineering solutions for chronic neural interfaces, yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have been largely unaddressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multidimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients is achievable. In this review, the interdependence of different electrode components is highlighted to demonstrate the current material-based challenges facing the field of neural interface engineering. Neural interface engineering aims to apply advanced functional materials to seamlessly integrate neural technology with the nervous system in order to restore brain function in patients and uncover at least some of the brain's mysteries. This review highlights the challenges and interdependence of material components for long-term functional performance, and compiles a “roadmap” to guide material-based neural interface engineering.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201701269

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.