3 years ago

Organic Electrodes and Communications with Excitable Cells

Organic Electrodes and Communications with Excitable Cells
Gordon G. Wallace, Alexander R. Harris
Electrodes can provide information on neural function and stimulate neural activity. These neural electrodes can provide remarkable benefit to people suffering physical trauma or neural disease. Traditional metal electrodes have shortcomings related to poor biostability, cytocompatibility, and a rigid structure that maps poorly to tissue. Organic conductors can be formed with various chemical and physical properties to create improved electrode-neural interfaces. The processability of organic conductors enables their use in advanced fabrication methods. This review details the use of graphene, carbon nanotubes, and conducting polymers for neural interfacing. Construction of novel neural electrode architectures via advanced fabrication processes is also addressed. Organic materials can control cell behavior; organic conducting materials are also able record and stimulate excitable cells. This review covers graphene, carbon nanotubes, and organic conducting polymers interfacing with cells. Different methods of fabricating electrode structures are also discussed.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700587

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.