5 years ago

Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid

Structural Effects of Gating Poly(3-hexylthiophene) through an Ionic Liquid
Alberto Salleo, Jesus O. Guardado
Ionic liquids are increasingly employed as dielectrics to generate high charge densities and enable low-voltage operation with organic semiconductors. However, effects on structure and morphology of the active material are not fully known, particularly for permeable semiconductors such as conjugated polymers, in which ions from the ionic liquid can enter and electrochemically dope the semicrystalline film. To understand when ions enter, where they go, and how they affect the film, thin films of the archetypal semiconducting polymer, poly(3-hexylthiophene), are electrochemically doped with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, the archetypal ionic liquid. High-resolution, ex situ X-ray diffraction measurements and complete pole figures reveal changes with applied voltage, cycling, and frequency in lattice spacing, crystallite orientation, and crystallinity in the bulk and at the buried interface. Dopant ions penetrate the film and enter the crystallites at sufficiently high voltages and low frequencies. Upon infiltrating crystallites, ions permanently expand lamellar stacking and contract pi-stacking. Cycling amplifies these effects, but higher frequencies mitigate the expansion of bulk crystallites as ions are hindered from entering crystallites. This mechanistic understanding of the structural effects of ion penetration will help develop models of the frequency and voltage impedance response of electrochemically doped conjugated polymers and advance electronic applications. X-ray characterization reveals two regimes of structural change in thin films of polymer poly(3-hexylthiophene) gated through 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Tracking how ion penetration affects lattice spacing, crystalline orientation, and crystallinity elucidates mechanisms of the structural changes induced. Ions penetrate the film and enter crystallites at sufficiently high voltages and low frequencies. Cycling amplifies changes, though some effects are mitigated at higher frequencies.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201701791

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.