5 years ago

Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things

Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things
Luisa Petti, Alwin Daus, Giovanni A. Salvatore, Stefan Knobelspies, Filippo Dalla Valle, Lars Büthe, Francesco Robotti, Michele Magno, Jenny Sülzle, Norbert Kirchgessner, Gerhard Tröster, Petar Jokic, Raoul Hopf, Giuseppe Cantarella
Recent advances in biomaterials, thin film processing, and nanofabrication offer the opportunity to design electronics with novel and unique capabilities, including high mechanical stability and biodegradation, which are relevant in medical implants, environmental sensors, and wearable and disposable devices. Combining reliable electrical performance with high mechanical deformation and chemical degradation remains still challenging. This work reports temperature sensors whose material composition enables full biodegradation while the layout and ultrathin format ensure a response time of 10 ms and stable operation demonstrated by a resistance variation of less than 0.7% when the devices are crumpled, folded, and stretched up to 10%. Magnesium microstructures are encapsulated by a compostable-certified flexible polymer which exhibits small swelling rate and a Young's modulus of about 500 MPa which approximates that of muscles and cartilage. The extension of the design from a single sensor to an array and its integration onto a fluidic device, made of the same polymer, provides routes for a smart biodegradable system for flow mapping. Proper packaging of the sensors tunes the dissolution dynamics to a few days in water while the connection to a Bluetooth module demonstrates wireless operation with 200 mK resolution prospecting application in food tracking and in medical postsurgery monitoring. Advances in biomaterials and nanofabrication allow designing highly mechanically stable electronics that are biodegradable. This study demonstrates temperature sensors whose material composition enables full biodegradation while the layout and ultrathin format ensure fast response time and reliable operations upon stretching and folding. Wireless operation, achieved via an external Bluetooth module, prospects application in food monitoring and post-surgery implants.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201702390

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.