3 years ago

Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability

Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability
Chuanwei Cheng, Haifeng Zhang, Weina Ren, Cao Guan
This study reports the design and fabrication of ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall array hybrids on flexible carbon cloth (CC@CN@MoS2) as a free-standing anode for high-performance sodium ion batteries. When evaluated as an anode for sodium ion battery, the as-fabricated CC@CN@MoS2 electrode exhibits a high capacity (653.9 mA h g−1 of the second cycle and 619.2 mA h g−1 after 100 cycles at 200 mA g−1), excellent rate capability, and long cycling life stability (265 mA h g−1 at 1 A g−1 after 1000 cycles). The excellent electrochemical performance can be attributed to the unique 2D hybrid structures, in which the ultrathin MoS2 nanosheets with expanded interlayers can provide shortened ion diffusion paths and favorable Na+ insertion/extraction space, and the porous N-doped carbon nanowall arrays on flexible carbon cloth are able to improve the conductivity and maintain the structural integrity. Moreover, the N-doping-induced defects also make them favorable for the effective storage of sodium ions, which enables the enhanced capacity and rate performance of MoS2. A unique 2D MoS2 nanosheets@N-doped carbon nanowall hybrid structure on carbon cloth is fabricated and utilized as an efficient anode for high-performance sodium ion batteries.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201702116

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.