3 years ago

Upper-twin-peak quasiperiodic oscillation in x-ray binaries and the energy from tidal circularization of relativistic orbits.

C. Germanà

High frequency quasiperiodic oscillations (HF QPOs) detected in the power spectra of low mass x-ray binaries (LMXBs) could unveil the fingerprints of gravitation in strong field regime. Using the energy-momentum relation we calculate the energy a clump of plasma orbiting in the accretion disk releases during circularization of its slightly eccentric relativistic orbit. Following previous works, we highlight the strong tidal force as mechanism to dissipate such energy. We show that tides acting on the clump are able to reproduce the observed coherence of the upper HF QPO seen in LMXBs with a neutron star (NS). The quantity of energy released by the clump and relativistic boosting might give a modulation amplitude in agreement with that observed in the upper HF QPO. Both the amplitude and coherence of the upper HF QPO in NS LMXBs could allow us to disclose, for the first time, the tidal circularization of relativistic orbits occurring around a neutron star.

Publisher URL: http://arxiv.org/abs/1711.01626

DOI: arXiv:1711.01626v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.