3 years ago

Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices

Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices
Jose Kurian, Stefan Vogel, Thomas Schroeder, Leopoldo Molina-Luna, Tore Niermann, Christian Wenger, Lambert Alff, Michael Duerrschnabel, Erwin Hildebrandt, Hans-Joachim Kleebe, Michael Lehmann, Gang Niu, Pauline Calka, Sankaramangalam Ulhas Sharath
Hafnium oxide (HfOx)-based memristive devices have tremendous potential as nonvolatile resistive random access memory (RRAM) and in neuromorphic electronics. Despite its seemingly simple two-terminal structure, a myriad of RRAM devices reported in the rapidly growing literature exhibit rather complex resistive switching behaviors. Using Pt/HfOx/TiN-based metal–insulator–metal structures as model systems, it is shown that a well-controlled oxygen stoichiometry governs the filament formation and the occurrence of multiple switching modes. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. In addition, the engineering of oxygen vacancies stabilizes atomic size filament constrictions exhibiting integer and half-integer conductance quantization at room temperature during set and reset. Identifying the materials conditions of different switching modes and conductance quantization contributes to a unified switching model correlating structural and functional properties of RRAM materials. The possibility to engineer the oxygen stoichiometry in HfOx will allow creating quantum point contacts with multiple conductance quanta as a first step toward multilevel memristive quantum devices. Oxygen stoichiometry engineering is intrinsically achieved in hafnium-oxide-based memristive devices via reactive molecular beam epitaxy in a Pt/HfOx/TiN device configuration. This allows for uncovering the nature of complex coexistence of multiple switching modes (unipolar, bipolar, complementary, threshold) and occurrence of quantum conductance states. The findings are relevant to the control of switching dynamics in all oxide-based switching devices.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700432

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.