3 years ago

Scaling solutions in the derivative expansion.

A. Codello, N. Defenu

Scalar field theories with $\mathbb{Z}_{2}$-symmetry are the traditional playground of critical phenomena. In this work these models are studied using functional renormalization group (FRG) equations at order $\partial^2$ of the derivative expansion and, differently from previous approaches, the spike plot technique is employed to find the relative scaling solutions in two and three dimensions. The anomalous dimension of the first few universality classes in $d=2$ is given and the phase structure predicted by conformal field theory is recovered (without the imposition of conformal invariance), while in $d=3$ a refined view of the standard Wilson-Fisher fixed point is found. Our study enlightens the strength of shooting techniques in studying FRG equations, suggesting them as candidates to investigate strongly non-perturbative theories even in more complex cases.

Publisher URL: http://arxiv.org/abs/1711.01809

DOI: arXiv:1711.01809v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.