3 years ago

Characterization of Majorana-Ising phase transition in a helical liquid system.

Monalisa Singh Roy, Dayasindhu Dey, Sudip Kumar Saha, Sujit Sarkar, Manoranjan Kumar

We map an interacting helical liquid system, coupled to an external magnetic field and s-wave superconductor, to an XYZ spin system, and it undergoes Majorana-Ising transition by tuning of parameters. In the Majorana state, lowest excitation gap decays exponentially with system size, and the system has degenerate ground state in the thermodynamic limit. On the contrary, the gap opens in the Ising phase even in the thermodynamic limit. We also study other criteria to characterize the transition, such as edge spin correlation with its neighbor $C(r=1)$, local susceptibility $\chi_i$, superconducting order parameter of edge spin $P(r=1)$, and longitudinal structure factor $S(k)$. The ground state degeneracy and three other criteria lead to the same critical value of parameters for Majorana-Ising phase transition in the thermodynamic limit. We study, for the first time, the entanglement spectrum of the reduced density matrix of the helical liquid system. The system shows finite Schmidt gap and non-degeneracy of the entanglement spectrum in the Ising limit. The Schmidt gap closes in the Majorana state, and all the eigenvalues are either doubly or multiply degenerate.

Publisher URL: http://arxiv.org/abs/1711.01766

DOI: arXiv:1711.01766v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.