5 years ago

General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting

General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting
Xiaoqing Huang, Jun Guo, Qi Shao, Yecan Pi, Pengtang Wang
The development of bifunctional electrocatalysts for overall water splitting in acidic media is vital for polymer electrolyte membrane (PEM) electrolyzers, but still full of obstacles. Here, highly efficient acidic overall water splitting is realized by utilizing ultrasmall, monodispersed Iridium (Ir)-based nanoclusters (NCs) as the candidate, via a surfactant-free, wet-chemical, and large-scalable strategy. Benefiting from the high specific surface area, clean surface, and strong binding between NCs and supports, the IrM NCs exhibit attractive activities and durability for both oxygen evolution reaction and hydrogen evolution reaction in acidic electrolytes, with IrNi NCs showing the best performance. More significantly, in the overall water splitting, IrNi NCs reach 10 mA cm−2 at a cell voltage of only 1.58 V in 0.5 m H2SO4 electrolyte, holding promises for potential implementation of PEM water electrolysis. This work opens a new avenue toward designing bifunctional “acidic stable” catalysts for efficient overall water splitting. Ir-based nanoclusters (NCs) with highly dispersive feature are synthesized using a wet-chemical large-scalable strategy. Benefiting from the clean surface, high surface-to-volume ratio, large proportion of surface atoms, as well as strong interaction with support, this new series of Ir-based NCs exhibit superior activity and enhanced durability as bifunctional electrocatalysts for overall water splitting in acidic electrolyte.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700886

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.