A Complexity for Quantum Field Theory States and Application in Thermofield Double States.
This paper defines a complexity between states in quantum field theory by introducing a Finsler structure based on ladder operators (the generalization of creation and annihilation operators). Two simple models are shown as examples to clarify the differences between complexity and other conceptions such as complexity of formation and entanglement entropy. When it is applied into thermofield double (TFD) states in $d$-dimensional conformal field theory, results show that the complexity density between them and corresponding vacuum states are finite and proportional to $T^{d-1}$, where $T$ is the temperature of TFD state. Especially, a proof is given to show that fidelity susceptibility of a TFD state is equivalent to the complexity between it and corresponding vacuum state, which gives an explanation why they may share the same object in holographic duality. Some enlightenments to holographic conjectures of complexity are also discussed.
Publisher URL: http://arxiv.org/abs/1709.00921
DOI: arXiv:1709.00921v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.