3 years ago

Weight of fitness deviation governs strict physical chaos in replicator dynamics.

Archan Mukhopadhyay, Varun Pandit, Sagar Chakraborty

Replicator equation---a paradigm equation in evolutionary game dynamics---mathematizes the frequency dependent selection of competing strategies vying to enhance their fitness (quantified by the average payoffs) with respect to the average fitnesses of the evolving population under consideration. In this paper, we deal with two discrete versions of the replicator equation employed to study evolution in a population where any two players, interaction is modeled by a two-strategy symmetric normal-form game. There are twelve distinct classes of such games, each typified by a particular ordinal relationship among the elements of the corresponding payoff matrix. Here we find the sufficient conditions for the existence of asymptotic solutions of the replicator equations such that the solutions---fixed points, periodic orbits, and chaotic trajectories---are all strictly physical, meaning that the frequency of any strategy lies inside the closed interval zero to one at all times. Thus, we elaborate which of the twelve types of games are capable of showing meaningful physical solutions and for which of the two types of replicator equation. Subsequently, we introduce the concept of the weight of fitness deviation that is the scaling factor in a positive affine transformation connecting two payoff matrices such that the corresponding one-shot games have exactly same Nash equilibria and evolutionary stable states. The weight also quantifies how much the excess of fitness of a strategy over the average fitness of the population affects the per capita change in the frequency of the strategy. Intriguingly, the weight's variation is capable of making the Nash equilibria and the evolutionary stable states useless by introducing strict physical chaos in the replicator dynamics based on the normal-form game.

Publisher URL: http://arxiv.org/abs/1703.10767

DOI: arXiv:1703.10767v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.